
ORSYS - https://www.orsys.be/en/ - info@orsys.be - +32 (0)2 801 13 68 Page 1 / 3

Python: Object-Oriented Programming
Hands-on course of 5 days - 35h
Ref.: PYT - Price 2024: €2 960 (excl. taxes)

TRAINER QUALIFICATIONS
The experts leading the training are
specialists in the covered subjects.
They have been approved by our
instructional teams for both their
professional knowledge and their
teaching ability, for each course
they teach. They have at least five
to ten years of experience in their
field and hold (or have held)
decision-making positions in
companies.

ASSESSMENT TERMS
The trainer evaluates each
participant’s academic progress
throughout the training using
multiple choice, scenarios, hands-
on work and more.
Participants also complete a
placement test before and after the
course to measure the skills they’ve
developed.

TEACHING AIDS AND
TECHNICAL RESOURCES
• The main teaching aids and
instructional methods used in the
training are audiovisual aids,
documentation and course material,
hands-on application exercises and
corrected exercises for practical
training courses, case studies and
coverage of real cases for training
seminars.
• At the end of each course or
seminar, ORSYS provides
participants with a course
evaluation questionnaire that is
analysed by our instructional teams.
• A check-in sheet for each half-day
of attendance is provided at the end
of the training, along with a course
completion certificate if the trainee
attended the entire session.

TERMS AND DEADLINES
Registration must be completed 24
hours before the start of the
training.

ACCESSIBILITY FOR
PEOPLE WITH DISABILITIES
Do you need special accessibility
accommodations? Contact Mrs.
Fosse, Disability Manager, at psh-
accueil@ORSYS.fr to review your
request and its feasibility.

EDUCATIONAL OBJECTIVES
At the end of the training, the trainee will be able to:

Master the syntax of the Python language

Acquire the essential notions of object-oriented programming

Know and implement different Python modules

Designing graphic interfaces

Implementing tools for testing and evaluating the quality of a Python program

THE PROGRAMME
last updated: 01/2018

1) Syntax of Python language
- Identifiers and references. Coding conventions and naming rules.
- Blocks and comments.
- Available data types.
- Variables, formated display, local and global scope.
- Working with numeric types, working with character strings.
- Working with dynamic tables (list), static tables (tuple) and dictionaries.
- Using files.
- The if/elif/else conditional structure.
- Logical operators and comparison operators.
- while and for iterator loops. Break/continue iteration interrupts.
- The range function.
- Writing and documenting functions.
- Lambda expressions.
- Generators.
- Structuring code into modules.
- Hands-on work¤Installing and getting started with the Python interpreter.
Installing and getting started with the Python interpreter.

2) Object-Oriented Approach
- The principles of the Object paradigm.
- Defining an object (state, behavior, identity).
- The notion of a class, attributes, and methods.
- Encapsulating data.
- Communication between objects.
- Inheritance, transmitting a class's characteristics.
- Notion of polymorphism.
- Association between classes.
- Interfaces.
- Overview of UML.
- Diagrams of classes, sequences, activities, etc.
- Notion of design patterns.
- Hands-on work ¤UML modeling of a simple case study.
UML modeling of a simple case study.



ORSYS - https://www.orsys.be/en/ - info@orsys.be - +32 (0)2 801 13 68 Page 2 / 3

3) Object-Oriented Programming in Python
- The particular features of the Python Object model.
- Writing classes and instantiating them.
- Constructors and destructors.
- Attribute and method access protection.
- The need for the Self parameter.
- Simple inheritance, multiple inheritance, polymorphism.
- Notions of visibility.
- Special methods.
- Introspection.
- Implementing interfaces.
- Best practices and common design models.
- The use of the exception mechanism for error management.
- Hands-on work ¤Exercises in different object-oriented concepts by implementing the
case study.
Exercises in different Object-oriented concepts by implementing the case study.

4) Use of StdLib
- Passing arguments on the command line.
- The use of the Python regular expression engine with the "re" module, special
characters, cardinality.
- Working with the file system.
- Overview of some important modules of the standard library: “sys”, “os”, “os.path”
modules.
- Packaging and installing a Python library.
- Access to the relational database, the operation of the API DB.
- Hands-on work ¤Implementing Python modules: Regular expressions, accessing a
database
Implementing Python modules: Regular expressions, access to a database

5) QA tools
- Static code analysis tools (pylint, pychecker).
- Analyzing analysis reports (types of messages, warnings, errors).
- Automatic documentation extraction.
- The Python debugger (step-by-step execution and post-mortem analysis).
- Test-driven development.
- Python unit test modules (Unittest., etc.).
- Automating tests, aggregating tests.
- Code coverage tests, profiling.
- Hands-on work ¤Using the tools pylint and pychecker to check Python code.
Implementing unit tests.
Using the tools pylint and pychecker to check Python code. Implementing unit tests.

6) Creating the TkInter HMI
- The principles of programming graphical user interfaces
- Overview of the TkInter library.
- The main containers.
- Overview of the widgets available (Button, Radiobutton, Entry, Label, Listbox, Canvas,
Menu, Scrollbar, Text, etc.).
- The window manager.
- Placement of components, different layouts.
- Event management, the "event" object.
- Multi-window applications.
- Hands-on work ¤Designing a graphical user interface with the Tkinter library.
Designing a graphical user interface with the Tkinter library.



ORSYS - https://www.orsys.be/en/ - info@orsys.be - +32 (0)2 801 13 68 Page 3 / 3

7) Python/C interface
- Overview of the Ctypes module.
- Loading a C library.
- Calling a function.
- Rewriting a Python function in C with the Python/C API.
- Creating C modules for Python.
- The Python interpreter in C.
- Using the code profiler.
- Hands-on work¤Calling functions written in C from Python. Creating C modules for
Python with Pyrex.
Calling functions written in C from Python. Creating C modules for Python with Pyrex.

8) Conclusion
- Critical analysis of Python.
- Evolution of the language.
- Webography and bibliography elements.

DATES

REMOTE CLASS
2024 : 02 Sep, 16 Dec


